KOZMİK ANAFOR
Kozmik Anafor Arşivi Sahte Bilim

Sahte Matematik: 2×2=5 Etmez!

Bu yazıyı yaklaşık 2 dakikada okuyabilirsiniz.

2×2’nin matematiksel olarak 5 etmesi, sosyal medyada sıkça dillendirilen oldukça popüler yanlışlardan biridir.

İddia sahipleri şu hesabı yaparak savlarını kanıtladıklarını iddia ediyorlar:

2×2 = 2×2
5+(2×2)=5+(2×2) >> Her iki tarafa 5 ekledi
5(5+(2×2)) = 5(5+(2×2)) >> Her iki tarafı 5 ile çarptı
25+5(2×2)=25+5(2×2) >> 5’leri dağıttı
25-25=5(2×2)-5(2×2) >> 25’leri bir tarafa, 5(2×2)’leri bir tarafa aldı
5(5-5)=5(2×2)-5(2×2) >> (25-25)’i 5(5-5) şeklinde yazdı
5(5-5)=(2×2)(5-5) >> İfadeyi düzenledi(heyecanlı bekleyiş sürüyor)

Ve (5-5)‘leri götürerek >> 5=2×2 sonucuna ulaşıyor. Peki bu doğru mu, elbette hayır. Elinize iki ayrı sepette iki elma alıp, onları birbiri arasına yer değiştirerek 5 tane yapamazsınız. İşin ilginç yanı, yukarıda ihlal edilen matematik ilkesiyle istediğiniz sayıyı istediğinize eşitleyebiliyor olmanıza rağmen bunun genellikle 2×2=5 şeklinde gösterilmesidir. Örneğin ben istersem 18’i 16’ya eşitleyebilirim.

Hata Nerede?

Hata en son basamakta (5-5), yani 0’ların birbirini götürmesidir. Yani yapılan işlem görüntü kalabalığını gözardı ettiğinizde 5×0=(2×2)x0 ‘da 0’ları götürmektir. 5×0 = (2×2)x0 gerçekten de birbirine eşittir, daha basit ifadesiyle 0=0’dır. Fakat matematikte sıfırları bu şekilde götüremezsiniz. Görüldüğü üzere böyle bir şey olsaydı her sayı her sayıya eşit olurdu. Örneğin 16×0=18×0, 0’ları götürün 16=18. Elbette ki bu böyle değil.

Neden 0 (sıfır)’ları götüremeyiz?

Bu durum matematikte ilkokuldan beri bize öğretilen bir kuraldır. 0 (sıfır), yutan eleman olarak adlandırılır. Aslında neden götüremediğimizi biraz daha derinlerde ararsak neden olduğu anlaşılır.

Bir sayının sıfıra bölümü, sonsuzu ifade eder. Sonsuz, sanılanın aksine bir sayı değil bir kavramdır. Yani aslında sayısal bir karşılığı değil, bir belirsizliği ifade eder. Peki ne oluyor da 0’a bölünce sonsuz olabiliyor? Yani olmayan bir şeye bölerseniz hiçbir şey olmaması gerekmez mi? Hayır. Bu durumu limit adını verdiğimiz kavramla açıklarız.

Math1
Bölen sayının değeri düştükçe sonucun değeri artar.

 

Eğer elinizdeki sayıyı, her seferinde daha küçük bir sayıya bölerseniz sonuç git gide büyüyecektir. Matematikteki limit kavramı da aşağı yukarı bunu ifade eder. Tam olarak ne olduğunu bilmiyorum, fakat şu şöyle iken sonuç buna gidiyor der. Yani,

Math2
Limit x 0’a giderken, 100/x

 

100/x ifadesinde x’i alıp bir yerden 0’a doğru götürürsem, ifade sonsuza yaklaşacaktır demek istenir. (Burada yaklaşım yönüne göre + veya – sonsuz olacaktır)

Sonuç olarak 0’a bölüm sonsuz, yani belirsiz olduğundan bu ifadeleri götüremeyiz. Çünkü ne olduğu belirsizdir. Kaldı ki aksi durumda bütün matematiğin saçmaladığı bir durumla karşılaşırız ki bu da mantıken böyle olmaması gerektiğini bize söyler.

Ögetay Kayalı

Bu yazımız, sitemizde ilk olarak 18 Ağustos 2015 tarihinde yayınlanmıştır.

Hep Daha Fazla Okumak Gerek

Ay’a Gidilmedi İddiaları

Zafer Emecan

Basit Matematik İşlemiyle Evrenin Yasalarını Bulmak -1

Alperen Erol

Jeodezik Eğri: En Kısa Mesafe

Ögetay Kayalı

Roketle Yörüngeye Çıkmadan Dünya’nın Düz Olmadığını Nasıl Kanıtlarsınız?

Ozan Zaloğlu

Güneş’in Kötü İkizi: Nemesis

Zafer Emecan

İspat Yükümlülüğü: Argumentatum Ad Ignorantiam/Cehalete Başvurma

Kozmik Anafor