Gazetelerde, iri puntolarla atılan başlıkları bilirsiniz. O günün sabahında, gerek bir yandan iş adamlarını, iş kadınlarını ve siyasetçileri, diğer yandan spor kulübü başkanlarını, borsa simsarlarını ve yatırımcıları bir koşturmaca içine sokacak olan konuların; gerekse insanlar arasındaki etkileşimlerin, medyaya yansıyan fragmanıdır bütün bunlar.

Bazen bu gazetelerde -ilginçtir- bilimsel haberlere rastlarız. Bilimsel ifadesine bir açılım yapmak gerekirse, “İsviçreli/Amerikalı/İngiliz bilim adamlarının yaptığı araştırmaya göre…”  diye başlayarak, ”…bir erkek, günde 16 kez…/…bir kadın, günde 8 kez…” diye devam eden haberler, bilimsel haber niteliği taşımazlar. Bu tür haberler, gazetelerin, boş alan doldurma endişesinin birer sonucu olan istatistiklerdir.

Bu haberler içinde yıldızı parlayan, yer yer değerli yazılara konu olan bir gelişme söz konusu: Higgs bozonu, teorik olarak tahmin edilişinden yaklaşık yarım asır sonra, CERN’de yapılan deneylerde keşfedilmişti. 2013 yılında ise, bu başarılarından dolayı, teoriyi yazan bilim insanları, Nobel Fizik Ödülü‘ne layık görülüp ödüllendirildiler. Peki, ödül nasıl bir buluşa gitti?

Peter Higss, geç de olsa gelen Nobel ödülünü gururla alırken, yüzü de gülüyor. (Fotoğraf: Routers)

 

CERN, yani Avrupa Nükleer Araştırma Merkezi, İsviçre ve Fransa sınırında yer alan, dünyanın en büyük parçacık fiziği laboratuvarıdır. Parçacık fiziği laboratuvarı ne demektir? Aslen bu tip bir laboratuvar, bir taşın en küçük yapısını merak eden ilkel insanın düşündüğü çözümlerin, günümüzdeki uzantısı demektir. 1954 yılında, 12 ülkenin katılımıyla kurulmuş olan CERN laboratuvarları, günümüzde 20 asil üyesine ilaveten Türkiye’nin de aralarında bulunduğu 8 gözlemci üyeye sahip. Peki, CERN deneylerini nasıl anlamamız ve değerlendirmemiz gerekiyor? Orada neler oldu ve niçin söz konusu buluş, bilim dünyası için önemli bir konum kazandı?

 Yüzyılın Deneyi

Eski Yunan doğa filozoflarının sonuncusu olan Demokritos, her şeyin atomlardan oluştuğunu söylerken kendinden oldukça emindi. “Bir kanıt sunmayı, Pers kralı olmaya tercih ederim!” derken de oldukça emindi kendinden. İşte insanın, en küçüğe ilgisinin simge isimlerinden biri, Demokritos idi.  Üzerinde oturduğunuz sandalyenin veya koltuğun, görebileceğiniz en küçük parçası sizi öksürtebilme, hatta hapşırtabilme olasılığına sahipken, göremeyeceğiniz kadar küçük parçaları ise, size, dünyanın en büyük makinesini inşa ettirebilir. Nitekim bilim insanları, maddenin atomdan da küçük yapıtaşlarını ve bu yapıtaşların en önemli özelliklerinin başında gelen kütleyi araştırmak üzere, dünyanın en karmaşık makinesini oluşturdular ve bu makineden belli bir başarı elde ettiler.

Fransa-İsviçre sınırında, yerin 100 metre altından geçen 27 kilometre uzunluğundaki tünele inşa edilen LHC (Large Hadron Collider: Büyük Hadron Çarpıştırıcısı), Aralık 2009 tarihinde proton çarpıştırmaya başlamıştı. Tıpkı ilkel bir topluluğa mensup bir bireyin, yukarıda sözünü ettiğimiz merak sebebiyle, bir taşı önce ikiye, sonra dörde ve giderek daha fazla parçalara ayırırken taşları birbirine vurmasında olduğu gibi. Hızlandırıcının üzerindeki, her biri birkaç katlı apartman büyüklüğündeki 4 detektör de yıllar süren hazırlıklardan sonra veri toplamaya başladılar.

Şekil 1 – CERN, başlıca deneyleri ve Higgs için en önemlisi, LHC. (Fotoğraf: CERN / Particle Physics for Scottish Schools.)

 

CERN Laboratuvarı’nda yer alan bu deneyler; CMS, ATLAS, LHC-B ve ALICE oarak isimlendiriliyorlar ve hepsinin kendine has açılımları bulunuyor. Atom çekirdeğinin pozitif yüklü parçacıkları olan protonların 14 TeV[1] enerjisinde çarpıştırıldığı bu deneyler, araştırmacılara Evren’in ilk zamanlarını anlama olanağı verebilecek olması bakımından önemliydi.

Yapılan deneylerde, LHC Laboratuvarı’nda, her biri 7 TeV enerjiye sahip olan ve 27 kilometrelik dairesel tünel içinde ışık hızına çok yakın hızlarda yol alan proton demetleri, çarpışarak 14 TeV’luk merkezi enerji meydana getirdi. Böylelikle atom altı dünyanın, şimdiye kadar yabancısı olduğumuz özelliklerini keşfetme şansımız oldu. Bu bölgedeki enerji yoğunluğu, evrenin başlangıcındaki Big Bang (Büyük Patlama) koşullarına yakın olduğundan dolayı, basında LHC deneyleri Big Bang deneyleri adıyla da adlandırılmıştı. Bununla beraber, bu deneylerde üretilen enerji, bir kibritin yanması sırasında üretilen enerjiden çok daha küçüktür.

Bu deneylerin temel hedefi, parçacık fiziğinde varılan son nokta olan, Standart Model adını verdiğimiz modelin yanıtlayamadığı sorulara yanıt bulmaktı. Standart Model, bize maddenin yapı taşlarının nasıl davrandığını ve birbirleriyle nasıl etkileştiklerini açıklamakta, ancak bunların nedenleri hakkında bilgi vermemekteydi ”Kütle neden var?” sorusuysa buna dair sorulardan en önemlisiydi. Higgs bozonu, işte tam bu noktada önerilmişti.

Büyük İngiliz teorik fizikçisi, Peter Higgs’ten 1 yıl önce doğru cevaba yaklaşıp, bu cevabın oralarda bir yerde olduğunun sinyallerini alan Philip Anderson’un kurduğu model, 1 yıl sonra Higgs’in işine yarayacaktı ve o yıl, makalesinde bunu, “Anderson’un plazmon modelinin relativistik bir versiyonu” biçiminde dile getirecekti.

Higgs’ten 1 ay önce ise, 49 yıl sonra Nobel Fizik Ödülü’nü Peter Higgs ile paylaşacağından habersiz, François Englert aynı modeli inceleyecek ve Higgs ile aynı sonuca varmasına rağmen, söz konusu bozonu tahmin edemeyecekti. Bununla beraber, Higgs’ten 1 ay sonra, Gerry Guralnik, Richard Hagen ve Tom Kibble gibi bilim insanları, Higgs’in yaklaşımına büyük katkıları olan, Higgs bozonunun kuantum özelliklerinden bahseden, hatta bu konuda Higgs’in çalışmalarından çok daha kapsamlı çalışmaları olan bilim insanları olarak, kronolojideki yerlerini alacaklardı.

Medyatikleşme süreci, onlarca mektuplaşma ağının, grup çalışmasının ve fikir alışverişinin gerçekleştiği çalışmalardan bir insanı çekip aldığı zaman, geride kalanları hatırlamak ne yazık ki pek kolay olmayabiliyor. Bu açıdan, bu hatırlatmaları yapmak yerinde oldu diye düşünüyoruz.

Standart Model bize, karşılaştığımız, etkilediğimiz, etkilendiğimiz her türlü maddenin, leptonlar ve kuarklar diye adlandırdığımız temel parçacıklardan oluştuğunu söyler. Örneğin atomun çekirdeğindeki proton ve nötronlar, 3’er kuarktan oluşurlar. Esasında bize çizilen küresel parçacık görselleri, bir anlamda yanıltıcıdır; zira bir proton, az önce de belirttiğimiz gibi, 3 kuarkın belli etkileşimlerle bir arada bulunmasından başka bir şey değildir. Bu belli etkileşimlerde de, aracı kuvvetler dediğimiz bozonlar rol oynar.

Yani madde, 6 kuark, 6 lepton ve bunların arasındaki etkileşimleri sağlayan aracı parçacıklardan ibarettir. Maddeyi oluşturan kuarkların dışında kalan diğer kuarklar, evrenin farklı yerlerinde hızla daha düşük kütleli kuarklara dönüşürler.

Ne çok etkileşim sözcüğü kullandık, değil mi? Açık yüreklilikle şunu itiraf etmemiz gerekiyor: etkileşim olgusunu anlamak, bütün bir fizik bilimini anlamakla neredeyse aynı değerde. İşte bu yüzden, en az, maddeyi oluşturan lepton ve kuarkları anlamak kadar, bozonları anlamak önemlidir.

Bir efsane haline gelen Higgs bozonu da bu parçacıklardan biriydi, dolayısıyla Higgs parçacığının var olup olmadığı sorusunun yanıtlanması, Standart Model açısından son derece önemliydi. Bu temel amacın yanında, diğer amaçlar için de, LHC deneyi dışındaki diğer bir deney sistemi, CMS (Compact Muon Selenoid – Sıkıştırılmış Müon Selenoidi) kuruldu.  LHC ve CMS, öncelikle Higgs parçacığını aramayı ve böyle bir parçacık varsa bunun kütlesini ve diğer özelliklerini ölçmeyi amaçlamaktaydı.

Öte yandan, LHC deneylerinin diğer amaçlarından biri de, Standart Modelin de ötesinde bir model olan Süpersimetri modelini sınamaktır. Süpersimetri,  Standart Modelin karşılaştığı sorunları çözmek için, 1970’lerde ortaya atılan bir teoridir; yani bir anlamda Standart Modelin yaması olarak görülebilir. Söz konusu parçacıklara bir de karşıt-parçacıklar öngören süpersimetriyle beraber, karşıt-parçacıklardan oluşan karşıt-madde ya da anti-madde fikri de ortaya çıkmıştır.

Sorunların bizim ilgileneceğimiz yönü ise, parçacıkların en temel özelliklerinden biri olan kütlenin, kendisini gösterişi olacak. Kütleyi miktar kavramından uzaklaştırıp parçacıklarda nasıl ortaya çıktığını kavramamız gerekecek. Bu bağlamda şunu belirtmemiz gerekiyor: Higgs bozonu, maddenin değil, parçacıkların (dolayısıyla madde parçacıklarına) kütlesinin kaynağıdır.

Şekil 2 – LHC tünelinden bir görüntü. Bu dev, mavi kablolar ise çok güçlü mıknatıslarla ve süper iletkenlerle sarılı parçacık taşıyıcıları. Parçacıklar, bunların içerisinde hızlandırılıyor ve çarpıştırılıyor. “Neden yerin altında?” diye sorarsanız, her saniye Güneş’ten vücudumuza nüfuz eden parçacıkları gösterebiliriz. Uzaydan dünyaya bu denli enerjik parçacıklar yağarken, böyle bir düzeneği yerin üzerinde kurmak pek de mantıklı sayılmazdı.

Deneylerde Büyük Patlama mı Tekrarlandı?

CERN’de gerçekleştirilen deneyler, Büyük Patlama’nın ne bir simülasyonu, ne de onu tekrarlıyor. Var olan modellerimizin uyuştuğu fikre göre, evrenimiz, 13,8 milyar yıl önce doğdu ve bugün için, hızlanarak genişliyor. Burada açabileceğimiz paranteze ise LHC deneylerinde protonların çarpıştırılarak evrenin başlangıcındaki enerji yoğunluğuna ulaşılmaya çalışıldığını yazmamız gerekir.

Protonların çarpışmasında ortaya çıkan mutlak enerji, hiç de katastrofik ölçeklerde bir enerji değil. Ancak protonların boyutları çok küçük olduğu için, enerji yoğunluğu çok fazla. Bu durumu şu şekilde örneklendirebiliriz: deniz suyunun ısısı, 1 litre kaynamış süte oranla kat kat daha fazladır. Çünkü ısı bir enerji ölçüsüdür ve deniz suyunun muazzam miktardaki kütlesinin içerdiği enerji, 1 litre kaynamış suyun enerjisinden milyarlarca kez daha büyüktür.

Böyle olduğu halde, yeteri kadar derin düşündükten sonra başımızdan aşağı 1 litre kaynamış su döktüğümüzde kavruluruz, ancak denize girdiğimizde hiçbir şey hissetmeyiz. Hatta deniz suyunun sıcaklığı düşükse üşürüz. Bunun nedeni, denizin ısısının dağılmış durumda olmasıdır. Oysa bir litre kaynamış suyun ısısı (yani enerjisi), küçük bir alanda yoğunlaşmıştır. Öyleyse önemli olan enerji miktarı değil, enerjinin yoğunlaşma derecesidir.

Kaçınız denize girdiğinde üşüdüğü için, yazın o sıcağı altında kıyıda oturup kitap okumayı tercih ediyor? (Görsel telif: Videoblocks.com)

 

Einstein’ın ünlü formülünü hatırlarsak, enerji, kütleyle özdeştir (E=mc2). Öyleyse enerji, yeteri derecede yoğunlaştığında maddeye dönüşür. Bunu, şöyle de ortaya koyabiliriz: bir maddenin enerjisini yeterli oranda arttırdığımızda, o maddenin kütlesi, enerjiye dönüşür. Yüksek enerji yoğunluklarında yüzlerce farklı parçacık ortaya çıkar. İçinde yaşadığımız Evren’de, madde adını verdiğimiz, her şeyi (vücudumuz, gezegenimiz, Güneş, yıldızlar vb.) oluşturan bu üç parçacık da (esas olarak proton, nötron ve elektron), yaklaşık 13,8 milyar yıl önce, Evren’in başlangıcında ortaya çıkmışlardır. Şimdilik bu parçacıkları meydana getiren o muazzam enerjinin kaynağına dair ise sadece görüşler mevcut.

Evrenin kendisinin Büyük Patlama ile oluştuğunu söyledik. Diğer bir deyişle; uzay, zaman, madde ve enerji bu sırada oluştu. Şimdi önemli bir parantez daha açmamız gerekiyor: Büyük Patlama kuramı, Büyük Patlama anını değil, daha sonrasında neler olduğunu açıklıyor. Büyük Patlama anıkavramı, bizlerin tahayyül edemeyeceği kadar küçük bir zaman dilimini ifade etmektedir. Bir ”an” bile değil aslında; 0,00000000000000000000000000000000000000000001 saniye! Bildiğimiz varlığın ilk aşaması, işte bu zaman dilimine sığdı.

Peki, ne oldu?

Teorisyenler, Kuantum Teorisi bağlamında bu soruya gayet zarif yaklaşımlar getirerek, geçici enerji kabarcıkları, parçacık-karşıt parçacık çiftleri gibi kavramlar türettiler. Bu parçacıkların ve enerji kabarcıklarının enerjileri, ne kadar düşük olursa; o kadar uzun süre yaşıyorlar (Düşük enerjinin yüksek entropiyi getirdiğini hatırlayalım; odanızı toplamanız için odanızda bir miktar enerji harcamanız gerekir). 20. yüzyılın ikinci yarısına girildikten hemen sonra, ABD’li fizikçi Edward Paul Tryon adlı bir bilim insanı, bu konuda şu hipotezi sunmuştu:

“Evren, boşluktaki enerji dalgalanmasından ortaya çıkmıştır.”  

Bunun açıklaması, uzayın aslında sanıldığı gibi ”boş” olmadığıdır. Uzay, görünenin ötesinde, yani atom altı düzeyde müthiş aktiviteler içerir. Peki, nedir bu aktiviteler? Örneğin; elektron parçacığı ve bu parçacığın karşıt-parçacığı, yani pozitif elektron, diğer bir deyişle pozitron birlikte aynı anda ortaya çıkıp kaybolabilirler. Elektron-pozitron çiftinin ömrü, etkileşirken 10-21 saniye olup, aralarındaki mesafe 10-10 santimetredir. Ömür kavramı burada, parçacıkların kaybolmadan veya başka parçacıklara bozunmadan gözleme veya araştırmaya dâhil olma süreleridir. Bu arada kaybolmaktan kasıt, yok olmak değildir; enerji formuna dönüşmektir. Bir parçacık, karşıt-parçacığıyla etkileştiği zaman, enerjiye dönüşür ve ”enerji kabarcıkları”nı oluşturur. Bunlar da, Edward Tryon’un hipotezinde kullanılan enerji dalgalanmalarına sebep olurlar. İşte bu da, Büyük Patlama için gereken enerji için sunulan görüşlerden biridir.

Higgs Bozonu Evrene Nasıl Kütle Verir?

Aslında ortada, konuşulması gereken bir parçacıktan ziyade, konuşulması gereken bir alan bulunuyor. Söz konusu parçacık da zaten bu alanın temel elemanıdır. Deniz kıyısında yürümeye çalışırken harcadığınız enerjiyle karada yürümek için harcadığınız enerji eşit midir? Hangi durumda daha çok yorulursunuz? Evet, denizin içinde yürümeye çalışmak daha zordur. Çünkü etkileşmenizin şart olduğu ve gaz molekülleri kadar etrafa saçılmamış, daha bir arada moleküller söz konusudur denizde. Siz ise katısınızdır, baştan ayağa.

Higgs bozonu dediğimiz parçacığın ev sahibi olan, onu barındıran alan, işte bu deniz gibidir; bu alanda bulunan tüm varlıklara kütle verir. Denizde yürümemiz zorlaştığında, ağır hissederiz; üzerimizde fazladan kütle bulunuyormuş hissi söz konusu olur. İşte bu kütle verme durumunu, böyle bir modelle açıklayabiliriz. Hatta daha da ileri gidip, Higgs alanını, sağanak yağmura benzetebiliriz; ancak bu yağmur, romantik olmaktan biraz uzak. Bize kaçacak hiçbir yer bırakmıyor ve sürekli yağıyor.

Bu yağmurun altında kendinizi salarak bir süngeri düşünecek olursanız, o hafif, yumuşak ve bazen havuçlu keki andıran (acıkmak böyle bir şey olsa gerek) cismin gitmiş, yerine ıslak, ağır bir cismin gelmiş olduğunu gözünüzde canlandırabilirsiniz. Yağmura benzettiğimiz Higgs alanı, parçacıklara işte buna benzer bir mekanizmayla kütle vermektedir. Süngerler, boyutlarına ve kapasitelerine göre, değişen miktarlarda su emebilirler. Parçacıklar da birbirinden farklı kütlelerin oluşturduğu geniş bir yelpazeye yayılmışlardır.

En büyük kütlelere sahip parçacıklar, yukarıdaki analojiye geri dönecek olursak, Higgs alanıyla en güçlü etkileşen parçacıklar olacaktır; yani yağmurdan en çok etkilenen canlılar, yürümekte en çok zorlanan canlılar olacaktır. Bununla beraber, Higgs alanı ile hiç etkileşmeyen parçacıklar da söz konusudur ki, bizler, onlardan biri olan fotonlar sayesinde bir şeyleri görebiliriz. Diğer kütlesiz parçacık ise, atom çekirdeğindeki parçacıkları bir arada tutan gluondur. Bu iki parçacığı da, suyla herhangi bir etkileşime girmeyen ya da su geçirmez süngerler olarak düşünebiliriz. Tüm olan biten bunlardan mı ibaret? Tabii ki hayır. Başta diktatörce, konuşulması gerekene karar vermiştik; bu, Higgs alanıydı. Peki, ya Higgs bozonu? O neden var? Nasıl olur da analojide Higgs alanını temsil eden yağmur, aynı anda parçacık da olabilir?

İklimi değişen Dünya’da yağmur eksikliği, bir insan vücudundaki önemli bir vitaminin eksikliği gibidir; tedavi için farklı çözümler aranır, uzman beyinler bu konu için seferber olur. Geçen yıl gittiğim bir tatil beldesinde, Nijeryalı bir ailenin küçük bir çocuğuyla tanışmıştım. Kuraklıktan kaçan aile, aile kaynaklarını kaçmak için kullanmıştı. Zeki olduğu kadar, oldukça duygusaldı da Adisa[2].

Yine sıcak bir yaz gününde kendinden geçmiş olan bana güzel bir şaka yapmıştı balonun içerisine doldurduğu suyla. İmgeleminde, sıcak bir havada yağmura hasret kalan bir insanı, böyle serinletebileceğini kurgulamıştı belki de. Hiç de haksız değildi. Yalnız, o suni yağmuru yaratırken bile, Adisa’nın kullandığı suyun kaynağı yağmurdu. Dolayısıyla, analojiden hareketle, yine işin içine Higgs alanı girmek zorunda. İçi su dolu balon ise Higgs parçacığı olarak düşünülebilir. Higgs alanı, Higgs bozonunu da dâhil olmak üzere, tüm kütle sahibi parçacıklara, kütlelerini veren alandır.

Su olmadan (dolayısıyla yağmur olmadan) balonların da, süngerlerin de daha az ilginç olacağı gerçeği bir yana, Higgs alanı olmaksızın, hiçbir şeyin kütle sahibi olamayacağını düşünebiliriz. Hayır; Dünya üzerinde kalamayıp uzaya doğru uçmazdık, daha bu noktaya gelmeden, gezegenleri oluşturacak materyaller bir araya toplanamazdı. Şimdi Higgs bozonunun (Higgs alanının), evrendeki tüm kütle sahibi parçacıklara, onlarla etkileşerek kütle kazandırdığını biliyoruz. Yolu üzerindeki neredeyse her şeyden sızabilmeyi bir şekilde başaran ve bu sızış sırasında, içinden geçebildiği şeyleri ağırlaştıran su gibi, Higgs alanı da neredeyse tüm parçacık türlerine –bazılarına daha fazla olmak üzere- etki ederek kütle verir.

Geçtiğimiz yılın Temmuz ayında açıklanan buluş da, tam olarak bu parçacığın, Higgs bozonunun keşfiydi. Protondan yaklaşık 133 kat fazla kütleye sahip bu parçacığın keşfi, evrenimizin mevcut haline dair modellerimizle de birebir uyum sağlıyor.

Teori

Popüler bilim yayınlarında pek rastlayamayacağımız isimler hakkında daha önce, Higgs ile beraber anılması gereken bilim insanları söz konusu olduğunda yakınmıştık. Standart Modelin ve bu model kanalında gelişen başka kuramların bel kemiğini, ismine yine pek de sık rastlayamayacağımız iki matematikçi kurgulamıştır: Sophus Lie ve Hermann Weyl. Esasında Standart Model dâhilinde gelişen tüm olaylar, 1920 yılı dolaylarında, Hermann Weyl’in orijinal bir yaklaşımına dayanıyor. Tüm bu üzerinde konuştuğumuz parçacıkların ve kuvvetlerin, onların özelliklerine karşılık gelen ve aslında bizim uzayımıza bağlantı yapan iç uzaylar olan, fiber demetleri olarak adlandıracağımız yapılardan oluştuğu düşüncesi, bu yaklaşımın en açık tanımı.

Matematiksel tanıma göre, bir fiber demeti iki bölümden oluşuyor: taban manifoldu ve bu manifoldun üzerindeki fiberler. Manifold dediğimiz unsuru, üzerindeki herhangi bir noktaya yaklaştıkça, onu, sanki kusursuz derecede düzmüş gibi algılamaya başlayacağımız eğri bir yüzey veya uzay olarak düşünebiliriz. Dünya’nın yüzeyini, bir çeşit manifold olarak tahayyül edebiliriz; ona çok yakın durumdayız ve gerçekten de dümdüz görünüyor! Fiber demeti için de bir analoji gerekirse, kafa yüzeyimizi (taban manifoldu) ve saçlarımızı (fiber) gözümüzde canlandırabiliriz. Böylece fiberlerle taban manifoldları arasındaki bağlantıya, kabaca aşina hale geliriz.

Saçlarınızı hayal edin (hayır, çoğunuzun saçları böyle değil, farkındayız).

 

Ancak önemli bir nokta, fiberlerin, saçlarımız gibi düz olmak zorunda olmadıklarıdır, ancak olabilirler de. Fiberler, herhangi bir geometrik formda bulunabilir. Weyl’in düşüncesi, uzay-zamanımızın, bu matematiksel yapıdaki taban manifoldu olduğu ve parçacıklarla kuvvetlerin de bu taban manifoldunun üzerindeki fiberler olduğu şeklinde. Hatta bu kuramın kullanımında, ilginç bir biçimde, 4 temel kuvvetin her biri, bir Lie grubu ile tanımlanıyor (Sophus Lie’ı hatırlayalım).

4 temel kuvvetin olduğunu biliyoruz: elektromanyetik kuvvet (elektronları atom çekirdeği etrafında tutuyor), zayıf nükleer kuvvet (radyasyon), güçlü nükleer kuvvet(atom çekirdeğinin bileşenlerini bir arada tutuyor) ve kütleçekim. Günümüzde fizikçilerin nihai hayali, bu 4 temel kuvvetin tek bir kuramda birleştiğine tanık olmak. Elektrik ve manyetizma, James Clerk Maxwell tarafından yıllar önce elektromanyetizma olarak birleştirilmişti. Elektromanyetik kuvveti tanımlayan fiberlerimiz, en basit Lie grubu olan u(1) grubu olarak bildiğimiz çember grubu.

Aslında uzay-zaman manifoldunun her noktası, bu u(1) fiberleriyle dolu. Bu çemberler dalgalandıklarında, biz bu etkiyi, elektromanyetik dalga olarak gözlemliyoruz. Elektromanyetizmanın kuvvet taşıyıcı parçacığı, yani bozonu, zaten foton olarak biliniyor. Matematiksel olarak simetri üreteci kavramının fiziksel karşılığı, işte tam da bu foton dediğimiz parçacık olarak karşımıza çıkıyor. Yani u(1) grubunun tek bir simetri üreteci var ve bu matematiksel üreteç kavramının fiziksel karşılığını da foton olarak yorumluyoruz. Ayrıca elektrik yüklü parçacıklar(mesela elektron) da bu u(1) fiberlerinin etrafına dolanmış çember şeklindeki başka fiberler olarak tanımlanıyorlar.

Tüm kuvvetler, en basit fiber olan, elektromanyetik kuvvetin basit u(1) fiberleriyle tanımlanmıyor. Farklı kuvvetleri, farklı Lie grupları temsil ediyor. Kuvvetlerin yükleri ve onları ilgilendiren parçacıklar ise hep bu kuvvetlere karşılık gelen Lie gruplarına dolanan çember fiberler olarak betimleniyor. Örneğin zayıf kuvveti, üç boyutlu Lie grubu olan su(2) ile tanımlarız. İşin matematiği, bize bu Lie grubunun üç tane simetri üreteci olduğunu söyler. Bu modeli doğada (parçacık hızlandırıcılarda ve detektörlerde) test ettiğimizde ise bu üreteçlerin, zayıf kuvvetin taşıyıcı bozonları olan w+, w– ve z bozonlarının varlığını işaret ettiğini görürüz. Odamızdan bile çıkmadan, sadece matematik yaparak bu parçacıkların var olması gerektiğini işte böyle anlayabiliyoruz. Esasında yeni yeni gelişen bir beyni, fiziğe ya da matematiğe yönelten en zarif durumlardan birini analiz etmiş bulunuyoruz.

Maxwell’den sonra ikinci birleştirmenin ürünü, Abdus Salam, Sheldon Glashow ve Steven Weinberg adlı bilim insanları tarafından, elektromanyetik kuvvet ile zayıf kuvvetin birleştirilmesiyle karşımıza çıkanelektro-zayıf kuvvet oldu. Ne yaptıklarına gelince, elektromanyetik kuvvete karşılık gelen u(1) fiberiyle, zayıf kuvvete karşılık gelen su(2) fiberini birleştirdiler.

Bu birleştirme işlemi, söz konusu bilim insanlarınca, bazı karmaşık matematiksel işlemler yardımıyla gerçekleştirildi. İşte Higgs bozonunun ve z bozonunun var olmasının gerektiği de, tam olarak bu elektro-zayıf fiberi sayesinde anlaşılmıştı. Ancak salonda z bozonu bile bulunuyorken, biri eksikti: tahmin edebileceğiniz gibi, Higgs bozonu.

Şekil 3 – Fiberlerin, taban manifoldunun ve fiber demetinin basit bir betimi. (Görsel: Wolfram Alpha.)

 

Higgs bozonunun teorisi, tam olarak bu olay örgüsünün sonucudur ve esasında, bu olay örgüsü, herhangi bir takım oyununda yapılan eşsiz bir atağa benziyor. Aynı araç ve gereçleri kullanan bilim insanlarının geliştirdiği fikirler, sonunda, bu konuda net bir ifadeye sahip Peter Higgs ve arkadaşları tarafından, sayı ya da gol niteliğinde bir sonuca dönüştürüldü.

Bu nihai parantezi açtıktan sonra, bir diğer kuvvet olan güçlü kuvvete karşılık gelen fiber demetinin, yani su(3) Lie grubu ile tanımlanan grubun, kuark ve gluonların varlığını gösterdiğini söylemeliyiz. Gördüğünüz gibi, doğa, matematikle fark ettiğimiz tüm bu gerçekleri, yaptığımız deneyler sonunda bizden hiç esirgemiyor.

Standart Modelin bu bağlamda ne olduğuna gelecek olursak, aslında bu model, elektromanyetik kuvvet, zayıf kuvvet ve güçlü kuvvetin birleştirilmesi anlamına geliyor. Yani, u(1), su(2) ve su(3) fiberlerinin birleştirilip yorumlanmasından bahsediyoruz ve bu yorumlar işe yarıyorlar. İşe yaradıklarını da deneylerimizden anlıyoruz. Ancak sorun, Standart Model dediğimiz modelin, kütleçekimini açıklayamaması. Sebebi de gayet açık: kütleçekimine karşılık gelen fiberin, kuramın yorumu içerisinde bulunmaması.Bunlarla beraber, doğanın neden Lie gruplarını kullandığı vesoyut fiberlerin neden var olduğu bilinmiyor; bunlar da başka bir yazının konusu.

Sonuç: Ne Oldu?

Bilinen evrenin tamamı -en küçük bileşenler olan temel parçacıklardan galaksilerin en büyük kümelerine kadar- düşündüğümüzden daha fazla ortak nokta içeriyor. Çok büyük ölçek farkına rağmen, kozmosun en büyük ölçeklerini yöneten yasalar, en küçük parçacıkları ve etkileşimlerini yöneten yasalarla ortak noktalar içeriyor. Bizler, bu iki ölçek için tamamen farklı şekillerde çalışıyoruz: çok büyük ölçekler, sadece büyük teleskoplarla ve doğal kozmik laboratuvarlarla çalışılabilirken, küçük ölçekler, Dünya’da, gelmiş geçmiş en güçlü makinelerin, parçacık hızlandırıcılarının yapımını gerektiriyor. LHC (Büyük Hadron Çarpıştırıcısı) ise bunların en büyüğü olarak öne çıkıyor. LHC, çoğumuz için hâlâ heyecan verici olsa da, her şeyden önce, Standart Model’in kayıp parçası olan Higgs bozonunun bulunabilmesi için yapılmıştı.

Nobel Ödülü’ne layık görülen çalışmanın, Peter Higgs dışındaki yazarları. (Soldan sağa:  Kibble, Guralnik, Hagen, Englert, Brout.)

 

Söz konusu çarpıştırıcıdan gelen haberleri, zamanında takip edenlerimizin de hatırlayabileceği gibi, Higgs bozonunun kütlesi hakkında amansız bir spekülasyon söz konusuydu. Bunun bir sebebi vardı: tüm bu parçacıklar -kuantum alan teorisi bağlamında- gözlemlediğimiz her şey üzerinde çarpıcı bir etki sahibi. Diğer tüm parçacıkların kütlelerini tayin edebilen bir parçacık söz konusu.

Örneğin bizler, 3 kuarkın bir araya gelerek, atom çekirdeğindeki protonları ve nötronları oluşturduğunu düşünürüz. Ancak bu 3 kuarkın tamamının kütlesi, söz konusu parçacıkların kütlesinin yalnızca %2’sine karşılık geliyor; yani bu kuarklar, proton ve nötronun kütlesinin çok küçük bir kısmını oluşturuyor. Geriye kalan kütle ise, kuantum alan teorisi yasalarının öngördüğü diğer bazı parçacıklardan, daha doğru bir ifadeyle, etkileşimlerden gelir. Tüm bu parçacıklar, birbirlerine o kadar bağlıdır ki, üst kuark dediğimiz, tüm Standart Modelin en ağır parçacığı (protonun 180 katı kadar bir kütleye sahip) eğer şimdiki kütlesinin 2 katına sahip olsaydı, evrendeki tüm protonlar, şimdiki kütlelerinin %20’si kadar fazla kütleye sahip olacaktı! Yani Higgs, evrende ne varsa, kuantum alan teorisine göre, hepsiyle çok yüksek derecede bağlı durumda.

Standart Model, kütleçekimini içermiyor. Ancak gerçek evrende bu olgu bulunuyor ve evrenin, bizim varsaydığımız temel teori, kütleçekimi de dâhil olmak üzere, bilinen tüm kuvvetleri içeriyor. Kütleçekimi söz konusu olduğunda, düşük enerjili ve yüksek ölçekli bir kuvvet akla gelir, ancak bizler bu kuvvetin, kuantum mekaniğine uygulanabilirliğini test etmeye çalışıyoruz. Evrenin son parametresini (Higgs bozonunun kütlesi) sınırlamak için bunların yapılması gerekiyor. Eğer kütleyi belli bir değere indirgeyebilirsek, bu, artık evrende, Standart Model için yeni bir parçacık olmadığı sonucuna varmamızı sağlayabilir.

Ancak bizler, Higgs bozonunun kütlesini farklı bir değer olarak bulursak (düşük veya yüksek; fark etmez), bu, evrende yeni bir şeylerin bizleri beklediğini gösterir. Daha da ilginç olanıysa, Higgs bozonunun kütlesi, Büyük Hadron Çarpıştırıcısı çalıştırılmaya başlamadan 3 yıl önce, 2009’da hesaplanmıştı! Higgs bozonunun kütlesinin çok küçük bir belirsizlikle hesaplanması, süpersimetriye, ekstra boyutlara ve Güneş Sistemi’nde kurulması planlanan bir parçacık hızlandırıcısıyla bulunması beklenen herhangi bir yeni parçacığı öngören fantastik fikirlere karşı ezici bir kanıt olabilir. Bu kütle de ATLAS ve CMS detektörlerinden gelen verilerle beraber, sağlam bir olasılıkla, öngörülen kütlelerde saptanmıştı.

Evet, evrende hâlâ karanlık madde, simetri kırınımı, nötrinonun kütlesi gibi cevap bekleyen sorular var. Fakat en azından parçacık fiziği için yeni parçacıklar bağlamında, öğreneceğimiz başka hiçbir şey olmaması olasılığı söz konusu.

Emre Oral

[1] TeV: Tera Elektronvolt. Elektronvolt, bir elektron parçacığının, 1 voltluk gerilim altında hızlandırıldığında kazandığı enerji anlamına gelir. Dolayısıyla çok küçük bir enerji miktarıdır. Dolayısıyla önüne gelen tera, giga, mega gibi ön eklerle beraber anılır. 1 Tera elektron volt, 1 trilyon elektron volta, yani 1012 elektronvolta eşittir.

[2] Nijerya dilinde “Duru, açık”.